PF110LB

Eptinezumab for Prevention of Chronic Migraine: Results of 2 Quarterly Intravenous Infusions in the Phase 3 PROMISE-2 (<u>PRevention Of Migraine via Intravenous eptinezumab Safety and Efficacy-2) Trial</u>

Richard B. Lipton,¹ Peter J. Goadsby,² Julia Azimova,³ Messoud Ashina,⁴ Egilius L.H. Spierings,⁵ Paul Winner,⁶ Barbara Schaeffler,⁷ David Biondi,⁷ Suman Bhattacharya,⁷ Jeff Smith,⁸ Roger Cady⁷

¹Montefiore Headache Center, Albert Einstein College of Medicine, Bronx, NY; ²NIHR and Wellcome Trust King's College London, UK; ³University Headache Clinic, Moscow, Russia; ⁴Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; ⁵MedVadis Research, Watertown, MA; ⁶Premiere Research Institute, Palm Beach, FL; ⁷Alder BioPharmaceuticals, Inc., Bothell, WA; ⁸Alder BioPharmaceuticals Ltd, Dublin, Republic of Ireland

Introduction

- Migraine is a highly prevalent, disabling, and costly neurologic disorder¹
- Calcitonin gene-related peptide (CGRP) is a neuropeptide that plays an important role in migraine pathophysiology²
- Eptinezumab (ALD403) is an anti-CGRP IgG1 monoclonal antibody that rapidly and selectively binds to CGRP, inhibiting its biological activity³
- Eptinezumab:
- Binds the CGRP ligand with high affinity, resulting in potent and sustained inactivation of CGRP
- Is designed for rapid onset and durability (reliable $t_{1/2} \sim 30$ days)
- Is the only anti-CGRP monoclonal antibody glycoengineered for reduced immune activation
- Is the only anti-CGRP monoclonal antibody currently in development administered by quarterly iv infusion, allowing for 100% bioavailability within hours after infusion³
- In phase 2 studies in episodic and chronic migraine (CM),^{4,5} and a phase 3 study in episodic migraine,⁶ eptinezumab significantly reduced migraine days vs placebo, demonstrated migraine preventive efficacy, and was generally well tolerated
- Bere we present the findings of the phase 3 PROMISE-2 trial (ALD403-CLIN-011: NCT02974153) in patients with CM

Objectives

• To evaluate the efficacy and safety of 2 quarterly iv infusions of eptinezumab for the prevention of migraine in adult patients with CM

Methods

PROMISE-2 Study Design (N=1072) End of eDiary End of Study Primary Outcome Weeks 24 Infusions: lacebo Eptinezumab 100 mg Screening Eptinezumab 300 mg Confirm no. of 3L headache and

migraine days

BL, baseline.

• This was a phase 3, parallel-group, double-blind, randomized, placebocontrolled trial of repeat quarterly iv infusions of eptinezumab or placebo in subjects with CM

- Inclusion criteria included:
- Male or female aged 18–65 years
- □ Diagnosis of migraine at age ≤50 years by the criteria of the 3rd Edition of the International Classification of Headache Disorders (ICHD-3) beta
- □ History of migraine ≥1 year prior to screening
- □ During the 28-day screening period, subjects experienced ≥15 to ≤26 headache days, of which ≥ 8 were migraine days
- Prescription or over-the-counter medication for acute or prophylactic treatment of migraine had been prescribed or recommended by a healthcare professional
- Any prophylactic use of medications for headaches was stable for ≥3 months prior to screening
- Exclusion criteria included:
- Use of botulinum toxin within 4 months prior to screening and during the 28-day screening period
- Subjects with medication overuse headache not associated with opiates or butalbital could be enrolled
- Subjects completed an eDiary daily from screening visit through Week 24, with 90% compliance
- Treatment included 2 iv infusions of eptinezumab or placebo administered on Days 0 and 84 (Week 12)

Efficacy Endpoints

Primary Endpoint	Mean change from BL in monthly migraine days (MMD)	Weeks 1–12
Key Secondary Endpoints	≥75% migraine responder rate*	Weeks 1–4
	≥50% migraine responder rate* ≥75% migraine responder rate*	Weeks 1–12
Secondary Endpoints	100% migraine responder rate ⁺	Weeks 1–12

nigraine response (prespecified reduction from BL in MMD); *% of subjects who were migraine-free for each 4-week interval on average over Weeks 1–12

Results

Baseline Characteristics and Demographics

	Placebo	Eptinezumab 100 mg	Eptinezumab 300 mg		
Subjects, n	366	356	350		
Mean age, year (SD)	39.6 (11.3)	41.0 (11.7)	41.0 (10.4)		
Mean BMI, kg/m ² (SD)	27.0 (5.6)	26.4 (5.0)	26.3 (5.0)		
Female, %	89	86	90		
Mean years from migraine diagnosis	17.0	18.3	19.0		
Mean duration of CM, year (SD)	11.6 (10.9)	11.6 (11.7)	12.4 (11.2)		
≥1 prophylactic medication, n (%)*	163 (44.5)	161 (45.2)	155 (44.3)		
Mean migraine days/month (SD)	16.2 (4.6)	16.1 (4.6)	16.1 (4.8)		
Mean headache days/month (SD)	20.6 (3.0)	20.4 (3.1)	20.4 (3.2)		
Mean triptan/ergotamine days (SD) [†]	6.2 (6.7)	6.6 (6.9)	6.7 (6.5)		

*According to American Academy of Neurology/American Headache Society guidelines for migraine preventive treatment (medications identified by clinical review of coded medical data); [†]Days with triptan or ergotamine use as recorded in eDiary averaged over 28-day screening period. BMI, body mass index; SD, standard deviation.

- Mean BL migraine days were ~16 days/month across groups
- BL characteristics were balanced across treatment groups

Subject Disposition

Randomized Subjects, n (%)	Placebo n=375	Eptinezumab 100 mg n=372	Eptinezumab 300 mg n=374	Overall N=1121*
Full analysis population [†]	366 (98)	356 (96)	350 (94)	1072 (96)
Week 12 [‡]	356 (95)	349 (94)	344 (92)	1049 (94)
Week 24 [‡]	336 (90)	333 (90)	331 (89)	1000 (89)
Discontinued treatment early§	24 (7)	16 (5)	15 (4)	55 (5)
TEAE	3 (<1)	3 (<1)	8 (2)	14 (1)
Subject consent withdrawal or lost to follow-up	19 (2)	10 (1)	7 (1)	36 (3)
Other	2 (<1)	3 (<1)	0	5 (<1)

*All randomized: N=1121; all randomized and dosed: n=1072; all randomized, dosed, and captured at Week 12: n=1049; †Includes all randomized subjects who received eptinezumab or placebo; ‡Subjects by visit; % based on all randomized subjects; % based on full analysis population. TEAE, treatment-emergent adverse event.

Mean Change in Monthly Migraine Days Through 2 Dose Intervals

≥75% Migraine Responder Rate Through 2 Dose Intervals

≥50% Migraine Responder Rate Through 2 Dose Intervals

*Stratified Cochran–Mantel–Haenszel test used for statistical analysis; †p <0.0001 vs placebo for 300- and 100-mg doses (Weeks 1–12).

Monthly Migraine Freedom—100% Responder Rate—

*Stratified Cochran–Mantel–Haenszel test used for statistical analysis; % of sub, 300- and 100 mg doses (Weeks 1–12/unadjusted).

Safety Profile Through Week 32*

Subiects. n (%)	Placebo	Eptinezumab 100 mg n=356	Eptinezumab 300 mg n=350
Any TEAE	171 (47)	155 (44)	182 (52)
Any serious TEAE ⁺	3 (<1)	3 (<1)	4 (1)
Any TEAE leading to drug withdrawal	2 (<1)	3 (<1)	8 (2)
Nost frequent TEAEs [‡]			
Nasopharyngitis	22 (6)	19 (5)	33 (9)
Upper respiratory tract infection	20 (6)	15 (4)	19 (5)
Nausea	7 (2)	6 (2)	12 (3)
Urinary tract infection	6 (2)	8 (2)	12 (3)
Arthralgia	3 (<1)	5 (1)	11 (3)
Influenza	9 (3)	1 (<1)	10 (3)
Dizziness	4 (1)	5 (1)	9 (3)
Sinusitis	15 (4)	7 (2)	9 (3)
Migraine	16 (4)	6 (2)	8 (2)
Anxiety	1 (<1)	4 (1)	7 (2)
Fatigue	7 (2)	8 (2)	6 (2)
Back pain	6 (2)	7 (2)	6 (2)
Bronchitis	8 (2)	7 (2)	4 (1)

*Safety profile represents safety population; [†]All serious TEAEs reported unrelated to study drug; [‡]≥2% in any active treatment group.

Conclusions

 Eptinezumab subjects with CM showed significant reductions in monthly migraine activity across the primary and all key secondary endpoints

■ 33% of subjects treated with eptinezumab 300 mg experienced ≥75% reduction in MMD over Weeks 1–12, which increased to 43% of subjects after the 2nd infusion

■ 61% of subjects sustained a ≥50% reduction in MMD over Weeks 1–12, which increased to 64% of subjects after the 2nd infusion

Subjects experiencing monthly migraine freedom increased from ~15% to 20% from the 1st to 2nd infusion

• Overall TEAE rates for eptinezumab were similar to placebo and the safety profile was consistent with previous eptinezumab studies

References

1. Lipton RB, Silberstein SD. Headache. 2015;55:103-22; 2. Ho TE, et al. Nat Rev Neurol. 2010; 6:573-82; 3. Baker B, et al. Cephalalgia. 2017;37(suppl):109 4. Dodick DW, et al. Lancet Neurol. 2014;13:1100-7; 5. Dodick D, et al. Neurology. 2017;88(suppl 16):S52.003; 6. Saper J, et al. Cephalalgia. 2017;37(suppl):319-74. Acknowledgment

This study was funded by Alder BioPharmaceuticals. Inc.

Disclosures

R.B. Lipton: Alder, Allergan, Amgen, Autonomic Technologies, Avanir, Biohaven, Biovision, Boston Scientific, Dr. Reddy's Laboratories, Electrocore, Eli Lilly, eNeura, GSK, MSD, Pernix, Pfizer, Supernus, Teva, Trigemina, Vector, Vedanta; P.J. Goadsby: Alder, Allergan, Amgen, Autonomic Technologies, Dr. Reddy's Laboratories, Electrocore, Eli Lilly, eNeura, Journal Watch, Massachusetts Medical Society, MedicoLegal, Novartis, Oxford University Press, Scion, Teva, Trigemina, UpToDate, Wolters Kluwer; **J. Azimova:** MB Quest, Novartis, Pfizer, PRA Health Sciences M. Ashina: Alder, Allergan, Amgen, ATi, Eli Lilly, Novartis, Teva; E.L.H. Spierings: Alder, Allergan, Amgen, Teva;
P. Winner: Alder, Allergan, Amgen, Eli Lilly, Supernus, Teva; B. Schaeffler, D. Biondi, S. Bhattacharya, J. Smith, and R. Cady: Alder (full-time employees).

